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β-galactosidase is an enzyme that catalyzes the hydrolysis of lactose, a disaccharide, into 

glucose and galactose. β-galactosidase is a commercially essential enzyme for its catalytic 

properties and is widely used in various biotechnology processes. In this study, optimum 

production conditions were studied to produce the highest level of β-galactosidase using 

Kluyveromyces marxianus isolated from kefir grains, and changes in some fermentation 

metabolites during enzyme production were determined under optimum conditions. The 

pH, temperature, and incubation time were optimised to produce of β-galactosidase. The 

pH (4.0, 7.0, 8.0), temperature (25 - 37°C), and incubation time (0 - 60 h) were evaluated 

in the ranges. The highest specific enzyme activity was 47.31 U/mL at the end of 48 hour-

incubation at 200 rpm, at pH 8.0, and 30°C with 2% (v/v) inoculation rate. A high-

performance liquid chromatography system determined the changes in lactose, glucose, 

galactose, lactic acid, and ethanol concentrations at the optimum fermentation conditions 

by taking samples from liquid fermentation medium during enzyme production under 

these conditions. The amount of glucose and galactose formed by the lactose fermentation 

metabolism of K. marxianus decreased during the fermentation.  The ethanol concentration 

reached its highest concentration (18.44 g/L) at the 36th hour of fermentation. When 

fermentation metabolites were examined, β-galactosidase and K. marxianus metabolism 

treatment indicated remarkable findings. 
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Introduction 

 

Natural kefir is produced from kefir grains, a 

sophisticated collection of microorganisms 

embedded in a special polysaccharide structure 

(Koçak et al., 2021). The structure contains numerous 

lactic acid bacteria, acetic acid bacteria, and yeasts 

(Demirci et al., 2019; Kıvanç and Yapıcı, 2019). 

Kefir is a natural probiotic drink with antibacterial, 

anticarcinogenic and antistress properties, and 

antifungal effects (Guzel-Seydim et al., 2011; Larosa 

et al., 2020). Kefir consumption has many benefits for 

the digestive system and various health benefits 

(Erdoğan et al., 2019; Mitra and Gosh, 2020). The 

microorganisms in the structure of kefir and the 

metabolites formed during fermentation supply easy 

digestion of kefir and increase the absorption of 

nutrients by the body (Ozarslan and Kok Tas, 2018). 

Kluyveromyces marxianus, which produces various 

enzymes, is a crucial yeast in kefir (Lim et al., 2019). 

β-galactosidase (Lactase, EC 3.2.1.23) is the enzyme 

that catalyses the hydrolysis of lactose into glucose 

and galactose. In industrial practices, β-galactosidase 

is found in a wide variety of sources such as fungal, 

yeast, bacteria, plants, and animals; although, 

microorganisms are considered to be the most 

common source of β-D-galactosidase compared to 

other available sources because they are readily 

available and cheap (Panesar et al., 2010; Kumar et 

al., 2012). 

Whey proteins are multifunctional food 

components with high nutritional value. They offer a 

wide range of functional properties that allow new 

products to be developed and existing products to be 

optimised at significantly lower cost. Also, whey is a 

major by-product of the dairy industry and constitutes 

a serious problem for use. In the food industry, 

hydrolysis of whey by-galactosidase is a significant 

practice for enzyme technology. Environmentally, 

research on membrane separation technology allows 

considerable new opportunities for lactose 

fractionation. 
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β-galactosidase is widely used in the food 

industry to improve the sweetness, solubility, flavor, 

and digestibility of dairy products. Enzymatic 

hydrolysis of lactose with β-galactosidase is one of 

the most common technologies used in lactose-free 

milk and dairy products for people with lactose 

intolerance, and in the prevention of crystallisation 

during the production of ice cream and concentrated 

milk (Husain, 2010; Gupte and Nair, 2010). In a 

broader sense, the industrial demand for β-

galactosidase has increased due to the need for more 

production methods by enzymatic hydrolysis. Thus, 

optimising the production of this enzyme is very 

important (Braga et al., 2012). Several studies have 

been carried out on the optimisation of various culture 

conditions to produce of β-galactosidase by using K. 

marxianus (Fiedurek and Szczodrak, 1994; Furlan et 

al., 2001; Manera et al., 2008; Gupte and Nair, 2010; 

Braga et al., 2012; Perini et al., 2013).  

Enzyme activity varies based on culture 

conditions such as source, pH, temperature, 

incubation time, agitation speed, and growth medium 

composition (Dagbaglı and Goksungur, 2008). In this 

study, optimum production conditions were studied 

to produce the highest level of β-galactosidase using 

K. marxianus isolated from kefir grain. Changes in 

some fermentation liquid medium metabolites were 

determined during enzyme production under 

optimum conditions. 

  

Materials and methods 

 

Organism and fermentation condition 

The K. marxianus used in this study was 

obtained from kefir grains (Ataç et al., 2021). This 

standard culture provided from Laboratory of Food 

Engineering, Suleyman Demirel University. K. 

marxianus was inoculated into a Yeast-Extract-

Peptone-Dextrose broth medium (YPD in g/l = 

peptone, 20; yeast extract, 10; glucose, 20), and 

incubated for two days at 25°C. The grown yeast 

culture was stored at 4°C. The enzyme production 

medium was prepared to be 150 mL (4.5 g lactose; 

0.15 g yeast extract; 0.3 g K2HPO4; 0.15 g 

NH4H2PO4; 0.03 g MgSO4x7H2O) medium in 500 

mL Erlenmeyer flasks and the pH of the medium was 

set to 4.0, 7.0, 8.0 at the beginning of the 

fermentation. The fresh grown culture was added to 

the enzyme production medium at a 2% (v/v) ratio 

and allowed to incubate at 200 rpm on a shaking 

incubator (SCILOGEX SK-0330-PRO, Berlin, 

USA). During the incubation at the various 

temperatures (25, 27, 30, 33, 35, 37°C), samples were 

taken at specific intervals and stored at 4°C for 

enzyme activity measurements. 

 

Enzyme extraction 

Since β-galactosidase is an intracellular 

enzyme, the cell suspension was centrifuged at 4,000 

rpm for 15 min, after which the cell pellet was washed 

with a 0.03 M potassium phosphate buffer (pH 6.8) 

and suspended in the same buffer. It was then 

vortexed in plastic bottles with glass beads (1 mm Ø) 

for 5 min. At the end of the process, the mixture was 

centrifuged again at 4,000 rpm for 10 min at 4°C, and 

the supernatant was used in enzyme activity assays 

(Song and Jacques, 1997). 

 

Enzyme activity assay 

Each unit of β-galactosidase activity was 

defined as the amount of enzyme liberating 1 µmol of 

o-nitrophenol per minute. The number of enzyme 

units in a milligram (mg) protein is considered its 

specific activity. The method of Shah and Otieno 

(2007) was modified and used in the measurement of 

β-galactosidase activity. Activity was determined 

using o-nitrophenyl-β-D-galactopyranoside (o-NPG; 

Sigma, Germany) as the substrate. The reaction 

started by adding 1 mL enzyme extract into the 

reaction mixture containing 0.2 mL 15 mM o-NPG in 

0.03 M potassium phosphate buffer (pH 6.8), 

incubated at 37°C for 15 min, and the reaction was 

then stopped by the addition of a 1 M 0.5 mL sodium 

carbonate (Merck) solution. Centrifugation was 

performed at 4,000 rpm for 10 min at 4°C, and the 

absorbance value was read at 420 nm with Biotek 

Synergy™ Multi-Detection Microplate Reader 

(Winooski, Vermont, USA). The same procedure was 

repeated with 1 mL 0.03 M potassium phosphate 

buffer (pH 6.8) instead of the crude extract, and a 

curve was prepared. The experiment was replicated 

three times using duplicate samples for each analysis. 

 

Protein assay 

Protein assay was performed by the Bradford 

method (Bradford, 1976). Bovine serum Albumin 

(Sigma, Germany) was used as a standard in this 

method. 

 

Measurement of lactose, glucose, galactose, lactic 

acid, and ethanol concentrations in fermentation 

liquid  
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After the determination of optimum conditions 

to produce β-galactosidase by K. marxianus, 

fermentation took place to determine the fermentation 

metabolites. Lactose, glucose, galactose, lactic acid, 

and ethanol concentrations were determined by 

modifying the method of Sun et al. (2016). The 

fermentation liquid sample was taken at the 0th, 12th, 

24th, 36th, 48th, and 60th hours. Then, the samples were 

centrifuged at 4,000 rpm for 10 min at 4°C, and the 

resulting supernatant was used after filtered through 

a 0.45 µm membrane filter. The amount of 

metabolites in the filtrate was determined using a 

high-performance liquid chromatography (HPLC; 

Shimadzu SCL-10A, Scientific Instruments, Inc., 

Tokyo, Japan). The HPLC consists of an RID 

(Refractive Index Detector), a system control unit 

(LC 20ADvp), a PUMP (LC 10ADvp), a degassing 

unit (DGU 20A), and a column oven (CTO 10Avp). 

For the sugar composition and the lactic acid, the HI-

PLEX Na (Octo) column was used, with a flow rate 

of 0.8 mL/min, column temperature of 70°C, and 

0.15% NaOH solution for the mobile phase. The 

amount of ethanol in the samples was determined 

with the Transgenomic COREGEL 87P column, 

using a flow rate of 0.8 mL/min, a column 

temperature of 50°C, and purified water for the 

mobile phase. The standard curve for each component 

was prepared and quantities were determined. 

 

Results and discussion 

 

The temperature, pH and fermentation time 

optimisation 

The incubation temperature of the fermentation 

medium is an important factor since it has a 

significant effect on the metabolic activities of 

microorganisms. The temperature, pH, and 

fermentation time optimisation results for β-

galactosidase production at the maximum level were 

given in Figure 1. The specific enzyme activity values 

for 25, 27, 30, 33, 35, and 37°C were 41.1, 22.82, 

47.31, 24.10, 23.52, and 14.27 U/mg, respectively. 

The highest specific enzyme activity was 47.31 U/mL 

at 30°C. Several studies have been carried out for the 

optimisation of β-galactosidase production at 25 - 

30°C (Artolozaga et al., 1998; Ramirez-Matheus and 

Rivas, 2003; Matthews, 2005; Panesar et al., 2006). 

Perini et al. (2013) found an optimum temperature of 

31°C and a maximum specific activity of 21.99 U/mL 

for β-galactosidase production using K. marxianus. 

Panesar (2008) reported the optimum temperature 

and the enzyme activity for β-galactosidase 

production using K. marxianus NCIM 3465 to be at 

30°C and 1490 IU/g dry weight, respectively. 

The pH of growth medium plays a vital role by 

triggering morphological changes in the 

microorganism and enzyme production. The pH 

changes observed during the growth of the organism 

affect product stability in the medium (Gupta et al., 

1994). In this study, at the end of the 48-hour 

fermentation, the maximum specific enzyme activity 

was 47.31 U/mL at pH 8.0, while the lowest specific 

enzyme activity was 5.12 U/mL at pH 4.0 and 37°C. 

For specific enzyme activity, the pH values showed 

differences depending on fermentation time and 

temperature. Gupte and Nair (2010) noted that the 

optimum pH was 5.0 for β-galactosidase production 

using K. marxianus NCIM 3551. Manera et al. 

(2008), on the other hand, reported that the optimum 

pH for 10.6 U/mL enzyme activity was 6.0 for β-

galactosidase production using K. marxianus CCT 

7082. 

The highest specific enzyme activity was 

measured at the 48th hour. At all temperatures and pH 

values, enzyme activities decreased after the 48th 

hour. The unique intrinsic properties of different 

strains may cause variations in optimum conditions 

for the best enzyme activity. 

 

Determination of lactose, glucose, galactose, lactic 

acid, and ethanol concentrations in fermentation 

liquid 

Lactose is broken down to form some 

fermentation metabolites with fermentation, as shown 

in Table 1 and Figure 2. The amounts of galactose, 

glucose, lactose, and lactic acid of the samples were 

examined at the 0th, 12th, 24th, 36th, 48th, and 60th 

hours. Lactose began to break down; lactose content 

was 7.56 g/L at the 12th hour, and 2.48 g/L at the 60th 

hour. Different pathways are used in the metabolisms 

of glucose and galactose caused by the decomposition 

of lactose by β-galactosidase. Glucose is converted to 

glucose 6-phosphate, but galactose is converted to 

glucose 1-phosphate by the Leloir pathway. At this 

stage, lactose decreased gradually due to the presence 

of different enzymes originating from the yeast 

(Carvalho Silva and Spencer Martins, 1990). 

Glucose, which was not detected in the fermentation 

liquid at the beginning, was 0.39 g/L at the 12th hour, 

reaching the highest concentration (4.21 g/L) at the 

36th hour. After that time, it began to decrease, and at 
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Figure 1. Specific activity values under different fermentation conditions. 

 

Table 1. Amounts of lactose and extracellular metabolites during fermentation. 

Time 

(h) 

Lactose 

(g/L) 

Glucose 

(g/L) 

Galactose 

(g/L) 

Ethanol 

(g/L) 

Lactic acid 

(g/L) 

0 30.00 ± 0.21 N.D. N.D. N.D. N.D. 

12 7.56 ± 0.25 0.39 ± 0.15 5.02 ± 0.23 12.28 ± 0.55 4.21 ± 0.05 

24 3.38 ± 0.05 1.40 ± 0.08 1.06 ± 0.16 15.92 ± 0.04 5.25 ± 0.05 

36 3.18 ± 0.09 4.21 ± 0.05 N.D. 18.44 ± 0.23 3.08 ± 0.06 

48 2.95 ± 0.13 3.85 ± 0.28 N.D. 17.89 ± 0.38 2.56 ± 0.16 

60 2.48 ± 0.05 3.51 ± 0.28 N.D. 13.13 ± 0.29 2.50 ± 0.06 

N.D.: not detected. 
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Figure 2. Variation of some fermentation component quantities 

 

the 60th hour, it was found to be 3.51 g/L (Table 1). 

Because of the breakdown of lactose, glucose and 

galactose were released; however, they continued to 

decrease afterward due to the metabolism of K. 

marxianus. 

During glycolysis, glucose is metabolised by 

K. marxianus, glucose content decreases, and lactic 

acid content increases; however, glucose was not 

depleted entirely until the 60th hour. This was 

interpreted as the conversion of galactose to glucose 

by the galactose metabolism and the Leloir pathway. 

Some enzymes in the pathway (galactose-1-

phosphate uridyltransferase) and a uridine 

monophosphate (UMP) group catalyse the transfer 

from UDP-glucose to galactose 1-phosphate to 

produce glucose 1-phosphate and UDP-galactose. To 

complete the pathway, UDP-galactose is converted to 

UDP-glucose with UDP-galactose 4-epimerase. In 

most organisms, the conversion of β-D-galactose to 

the metabolically more beneficial glucose 1-

phosphate is realised by the effect of four enzymes 

that form the Leloir pathway. Galactose was 5.02 g/L 

at the 12th hour. It decreased to 1.06 g/L at the 24th 

hour, and was not detected at the 36th hour. 

Considering the galactose metabolism, this decrease 

was interpreted as usual. 

The resulting galactose is epimerised to α-D-

galactose with galactose mutarotase. The next step 

involves ATP-dependent phosphorylation of α-D-

galactose with galactokinase to obtain galactose 1-

phosphate. The Leloir pathway enzymes are specified 

as galactose mutarotase, galactokinase, galactose-1-

phosphate uridyltransferase, and UDP-galactose 4-

epimerase (Holden et al., 2003). Lactic acid was 4.21 

g/L at the 12th hour, and reached its highest 

concentration at the 24th hour. At the later hours of 

fermentation, the concentration continued to 

decrease. Glycolysis and galactose metabolism 

continued until the 60th hour. Ethanol formation 

started at the 12th hour, and was 13.13 g/L at the 60th 

hour. Considering the glucose metabolism of yeast, it 

was interpreted that sugar conversion to ethanol was 

achieved. Under conditions where the dissolved 

oxygen concentration in the medium is low and the 

substrate concentration is high, K. lactis and K. 

marxianus are capable of producing ethanol (Ornelas 

et al., 2008). As shown in Table 1, the ethanol 

concentration in the fermentation liquid medium 

reached its highest concentration (18.44 g/L) at the 

36th hour; however, after this time, the ethanol in the 

medium gradually decreased. In this case, it is 

foreseen that previously produced ethanol was used 

instead of the lactose depleted in the medium, leading 

to reduced the ethanol in the medium. 

Although glucose, galactose, and lactose were 

initially present in the medium fermented with K. 

marxianus, the lactose was used after near depletion 

of glucose and galactose after the start of the 

fermentation. It shows that lactose can induce the 

metabolism of K. marxianus (Cheng et al., 2006). 

Many studies have been conducted on ethanol 

production from K. marxianus using different 

substrates under different production conditions. In 

this study, 18.44 g/L ethanol was obtained by K. 

marxianus using lactose as substrate. These results 

are similar to the studies presented so far (Zafar and 
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Owai, 2006; Ozmihci and Kargi, 2007; Limtong et 

al., 2007; Sansonetti et al., 2011; Garcia-Aparicio et 

al., 2011; Goshima et al., 2013; Hadiyanto et al., 

2014; Gao et al., 2015; Galindo-Leva et al., 2016; 

Sayed et al., 2018). According to the data obtained, 

whey powder and synthetic medium can be an 

attractive substrate for ethanol production, and 

therefore the problem of environmental pollution 

caused by waste whey can be solved (Das et al., 

2016). 

 

Conclusion 

 

In the present work, the production of β-

galactosidase was optimised using K. marxianus, a 

natural isolate, and the change in some fermentation 

metabolites during fermentation, giving optimum 

parameters for β-galactosidase production, was 

examined. The highest specific enzyme activity was 

found to be at 47.31 U/mL at the end of 48 hour-

incubation at 200 rpm, pH 8.0, and 30°C with 2% 

(v/v) inoculation rate. Different optimum conditions 

have been reported in various studies due to factors 

such as microbial differences and various 

fermentation conditions. Aerobically assimilating 

yeasts are common, and fermenters such as K. lactis, 

K. marxianus, and Candida pseudotropicalis are 

quite rare. Fermentation of whey lactose to ethanol, 

especially using yeast, has been frequently mentioned 

in several publications. Ethanol fermentation may be 

an alternative to the bio-modification of permeate, the 

impurity remaining after separation of whey proteins. 

Examining the fermentation metabolites revealed 

essential findings. The research findings presented 

herein contributed to the literature. This could also 

lead to the investigation of different optimisation 

conditions to increase the production of both ethanol 

and fermentation metabolites. The enzymes obtained 

from microbial sources reduce production costs and 

provide higher efficiency as compared to animal and 

plant sources. Commercially produced enzymes are 

derived from safe sources, particularly yeasts (K. 

marxianus, K. lactis, and K. fragilis) and moulds (A. 

niger and A. oryzae). Yeasts have been viewed as a 

major source of β-galactosidases from a commercial 

aspect. Considering the high level of β-galactosidase 

production, K. marxianus, a natural yeast, can be used 

as a potentially useful industrial strain for β-

galactosidase production. 
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